9=-16t^2+100

Simple and best practice solution for 9=-16t^2+100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9=-16t^2+100 equation:



9=-16t^2+100
We move all terms to the left:
9-(-16t^2+100)=0
We get rid of parentheses
16t^2-100+9=0
We add all the numbers together, and all the variables
16t^2-91=0
a = 16; b = 0; c = -91;
Δ = b2-4ac
Δ = 02-4·16·(-91)
Δ = 5824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5824}=\sqrt{64*91}=\sqrt{64}*\sqrt{91}=8\sqrt{91}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{91}}{2*16}=\frac{0-8\sqrt{91}}{32} =-\frac{8\sqrt{91}}{32} =-\frac{\sqrt{91}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{91}}{2*16}=\frac{0+8\sqrt{91}}{32} =\frac{8\sqrt{91}}{32} =\frac{\sqrt{91}}{4} $

See similar equations:

| 5x+9-3x=2x-7 | | -4x+16=4(x+4) | | -38-4p=3(7p+4) | | 5(6)3x=20 | | 2x+4=−40 | | 3(5x+7)=(7-9)/4 | | 12(x−28)=7+4x | | 5x+15=-5(3-x) | | 1/3x-5+175=x | | 3x−15=5x−23∘ | | 11+4x=6-5x | | −5(2x−3)=2(x−7)−43 | | -−5(2x−3)=2(x−7)−43 | | 32x+9-11=30 | | 7n2+2407n+61800=0 | | s^=729 | | 2x^2+34=0 | | -15+13=-2(x+3) | | 2x6^2+34=0 | | 13=w/2-7 | | v/15+0.6=0 | | 7t+2t=9t-36 | | 4x+6+2x+18=7x+3 | | r^2=216 | | 15=t+4.9t^2 | | 3t=8,16 | | 160=25/3x | | 1=2k−5 | | 10x-6=8x+18 | | 9x+18=35x+49 | | X+0.1x=655.20 | | -17=4y+7 |

Equations solver categories